
Deep Architecture



WHAT IS DEEP LEARNING

• Deep learning, an approach to AI based on 
enabling computers to learn from experience and 
understand the world in terms of a hierarchy of 
concepts, with each concept defined in terms of its 
relation to simpler concepts.



Several artificial intelligence projects have sought to hard-code 
knowledge about the world in formal languages.

The difficulties faced by systems relying on hard-coded knowledge 
suggest that AI systems need the ability to acquire their own knowledge, 
by extracting patterns from raw data.

This capability is known as machine learning.

What we call a learning machine or more generally learner is the agent 
that executes the learning procedure, that takes training data as
input and yields a change in the agent 



The performance of these simple 
machine learning algorithms depends 
heavily on the representation of the 
data they are given. 

Data can be represented in different 
ways, but some representations 
make it easier for machine learning 
algorithms to capture the knowledge 
they provide.

In many cases, the compact binary 
representation is
a poor choice for learning algorithms, 

eg: 3,encoded as binary 00000011
    4,encoded as binary 00000100) 
have no digits in common

while two values that are very 
different 
(like binary 10000001 = 129 and 
binary 00000001 = 1) only differ by 
one digit. 



Representation learning algorithms can either be supervised, 
unsupervised, or a combination of both (semi-supervised). 

Supervised learning requires examples that include both an input and a 
target output, the latter being generally interpreted as what we would 
have liked the learner to produce as output, given that input. Such
examples are called labeled examples because the target output often 
comes from a human providing that “right answer”. 



Unsupervised learning allows a learner to capture 
statistical dependencies present in unlabeled data, while 
semi-supervised learning combines labeled examples and 
unlabeled examples.



Machine Learning

A popular definition of learning in the context of computer programs is 
“A computer program is said to learn from experience E with respect to 
some class of tasks T and performance measure P, if its performance at 
tasks in T , as measured by P, improves with experience E” (Mitchell, 
1997). 



Manifold Learning

• The manifold learning states that probability is concentrated around 
regions called manifolds, i.e., that most configurations are unlikely 
and that probable configurations are neighbors of other probable 
configurations. (Cayton, 2005; Narayanan and Mitter, 2010)

• The manifold hypothesis also states that small changes (e.g. 
translating an input image) tend to leave unchanged categorical 
variables (e.g., object identity) and that there are much fewer such 
local degrees of freedom (manifold dimensions) than the overall 
input dimension (the number of observed variables).



These ideas turn out to be very important to understand the 
basic concept of representation associated with deep learning 
algorithms, which may be understood as a way to specify a 
coordinate system along these manifolds, as well as telling to 
which manifold the example belongs. 



Deep learning solves this central problem in representation learning by 
introducing representations that are expressed in terms of other, simpler 
representations. 

“Depth” is not a mathematically rigorous term in this context; there is no 
formal definition of deep learning. All approaches to deep learning share 
the idea of nested representations of data, but different approaches view 
depth in different ways.

For some approaches, the depth of the system is the depth of the flowchart 
describing the computations needed to produce the final representation. 
Other approaches consider depth to be the depth of the graph describing 
how concepts are related to each other.



Deep learning resolves this di
fficulty by breaking the 
desired complicated mapping 
into a series of nested simple 
mappings, each described by a 
different layer of the model. 
The input is presented at the 
visible layer. Then a series of 
hidden layers extracts 
increasingly abstract features 
from the image.





Convolutional networks are simply neural networks that use convolution in place 
of general matrix multiplication.



Suppose that our laser sensor is somewhat noisy. 
To obtain a less noisy estimate of the spaceship’s 
position, we would like to average together 
several measurements. Of course, more recent 
measurements are more relevant, so we will 
want this to be a weighted average that gives 
more weight to recent measurements. 

w(a) : weighting function
   a   :  the age of a measurement



Two dimensional discrete convolution :



Convolution leverages three important ideas that can help improve a machine learning
system: sparse interactions, parameter sharing, and equivariant representations

Traditional neural network layers use a 
matrix multiplication to describe the 
interaction between each input unit 
and each output unit. This means every 
output unit interacts with every input 
unit.

Convolutional networks, however, typically 
have sparse interactions (also referred to 
as sparse connectivity or sparse weights). 
This is accomplished by making the kernel 
smaller than the input.

eg. processing an image, the input image might 
have thousands or millions of pixels, but we can 
detect small, meaningful features







In a traditional neural net, each element 
of the weight matrix is used exactly 
once when computing the output of a 
layer. It is multiplied by one element of 
the input, and then never revisited.
 





Efficiency of edge detection. The image on the right was formed by 
taking each pixel in the original image and subtracting the value of its 
neighboring pixel on the left. Convolution is an extremely efficient way 
of describing transformations that apply the same linear transformation 
of a small, local region across the entire input.



Equivariant Representations

Figure above shows how sparse connectivity and parameter 
sharing can dramatically improve the efficiency of a linear 
function for detecting edges in an image.

In the case of convolution, the particular form of parameter 
sharing causes the layer to have a property called equivariance 
to translation.



To say a function is equivariant means that if the input 
changes, the output changes in the same way. Specifically, a 
function f(x) is equivariant to a function g if :

Equivariant 

f(g(x)) = g(f(x))

if we let g be any function that translate the input, i.e., shifts it

Definition: 

Then the convolution function is equivariant to g. For example, define g(x) 
such that for all i, g(x)[i] = x[i − 1]. This shifts every element of x one unit 
to the right. If we apply this transformation to x, then apply convolution, 
the result will be the same as if we applied convolution to x, then applied 
the transformation to the output. 



Similarly with images, convolution creates a 2-D map of where 
certain features appear in the input. If we move the object in the 
input, its representation will move the same amount in the output.

For example, when processing images, it is useful to detect edges in the 
first layer of a convolutional network, and an edge looks the same 
regardless of where it appears in the image. 

Note that convolution is not equivariant to some other  
transformations, such as changes in the scale or rotation of an image. 
Other mechanisms are necessary for handling these kinds of 
transformations



Pooling

A typical layer of a convolutional 
network consists of three stages

 rectifier is an activation 
function defined as
  



Pooling helps to make the representation become invariant to small 
translations of the input. This means that if we translate the input by a 
small amount, the values of most of the pooled outputs do not change.



For example, when determining whether an image contains a face, we 
need not know the location of the eyes with pixel-perfect accuracy, we 
just need to know that there is an eye on the left side of the face and 
an eye on the right side of the face. 

Example of learned invariances: If each of these fi
lters drive units that appear in the same max-pooling 
region, then the pooling unit will detect “5”s in any 
rotation. By learning to have each filter be a diff
erent rotation of the “5” template, this pooling unit 
has learned to be invariant to rotation. This is in 
contrast to translation invariance, which is usually 
achieved by hard-coding the net to pool over shifted 
versions of a single learned filter.



Because pooling summarizes the responses over a whole neighborhood, 
it is possible to use fewer pooling units than detector units, by reporting 
summary statistics for pooling regions spaced k pixels apart rather than 
1 pixel apart. 



Pooling with downsampling. Here we use max-pooling with a pool 
width of 3 and a stride between pools of 2. This reduces the 
representation size by a factor of 2, which reduces the computational 
and statistical burden on the next layer. Note that the final pool has a 
smaller size, but must be included if we do not want to ignore some of 
the detector units.



This improves the computational efficiency of the network because 
the next layer has roughly k times fewer inputs to process. When the 
number of parameters in the next layer is a function of its input size 
(such as when the next layer is fully connected and based on matrix 
multiplication) this reduction in the input size can also result in 
improved statistical efficiency and reduced memory requirements for 
storing the parameters.



Manifold perspective
Manifold learning is an approach to machine learning that is capitalizing on the 
manifold hypothesis (Cayton, 2005; Narayanan and Mitter, 2010): the data 
generating distribution is assumed to concentrate near regions of low dimensionality.

The notion of manifold in mathematics refers to continuous spaces that 
locally resemble Euclidean space, and the term we should be using is really 
submanifold, which corresponds to a subset which has a manifold 
structure. The use of the term manifold in machine learning is much looser 
than its use in mathematics

• the data may not be strictly on the manifold, but only near it,
• the dimensionality may not be the same everywhere,
• the notion actually referred to in machine learning naturally extends 
to discrete spaces.



manifold hypothesis: when a configuration is probable it is generally 
surrounded (at least  in some directions) by other probable configurations. 

e.g. : If a configuration of pixels looks like a natural image, then there 
are tiny changes one can make to the image (like translating everything 
by 0.1 pixel to the left) which yield another natural-looking image. 











哥德尔不完全性定理：



下面这个句子是假的

上面这个句子是真的



雅卡提花机：一种卡片控制的提花
机，能够织出惊人的复杂图案

发现哥德尔定理在计算机中的对应阿兰

图灵的发现：即便是在可以设想出来的性能最好的计算
机中，也存在有不可避免的漏洞

讽刺的是，在这些怪诞的局限性被发现的同时，人们有不
断制造出性能越来越好的计算机，以至于远远超出了制造
者们的预见力。

五十年代初期，机械化智能似乎已经指日可待了

在创造最终的真正的思维机器时，没跨越
一个障碍都要产生一个新的障碍。我们所
苦苦追寻的目标的隐蔽是否有着其中本身
的深刻内涵？

▪图灵



智能的基本能力：
1.对于情境有很灵活的反应
2.充分利用机遇
3.弄懂含糊不清或彼此矛盾的信息
4.认识到一个情境中什么是重要的因素，什么是次要的
5.在存在差异的情境之间能发现他们的相似处
6.从那些由相似之处联系在一起的事物中找出差别
7.用旧的概念综合出新的概念，把它们用新的方法组合起来
8.提出全新的概念

人工智能的奇异之处在于试图将一长串严格形式化的规则放在
一起，用这些规则教给不灵活的机器如何变得灵活



形式系统
与现实

对于那些基于现实的一部分的形式系统中有些看
起来模仿的很好。在这种模仿中，它的定理与有
关的那部分现实中的真理同构。

比如说，事物由组成事物的基本粒子构成，在三维空间里面
的运动假如都符合某种运动定律。那些物理法则，告诉人们
如何根据给定的时刻从给出的所有粒子的位置和速度，得出
属于“下一个瞬间”的一组新的位置和速度。




